High frequency random noise attenuation on shallow seismic reflection data by migration filtering

نویسندگان

  • Julian Ivanov
  • Richard Miller
  • Jianghai Xia
چکیده

Evaluation of this noise attenuation technique on real data conclusively shows significant improvement in data coherency and a decrease in high frequency random noise with no noticeable migration effects or artifacts. The method seems especially useful in situations where migration produces artifacts, high frequency random noise is present or where techniques such as spectral balancing have left an elevated level of background noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation

Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...

متن کامل

Seismic Reflection Tomography: A Case Study of a Shallow Lake Survey in Lake Balaton

Shallow seismic reflection marine profiles were collected in the area of Balaton Lake in Hungary using high frequency boomer techniques, in order to get information about the stratigraphy of the sedimentary layers. The noise in these shallow marine seismic reflection data is analyzed, and a series of traditional seismic data processing techniques is applied to improve the S/N ratio and coherenc...

متن کامل

Seismic dip estimation based on the two-dimensional Hilbert transform and its application in random noise attenuation

In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-tonoise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structureoriented polynomial fitting filter. At the core of structure-oriented filte...

متن کامل

Using a novel method for random noise reduction of seismic records

Random or incoherent noise is an important type of seismic noise, which can seriously affect the quality of the data. Therefore, decreasing the level of this category of noises is necessary for increasing the signal-to-noise ratio (SNR) of seismic records. Random noises and other events overlap each other in time domain, which makes it difficult to attenuate them from seismic records. In this r...

متن کامل

Nonlinear structure-enhancing filtering using plane-wave prediction

Attenuation of random noise and enhancement of structural continuity can significantly improve the quality of seismic interpretation. We present a new technique, which aims at reducing random noise while protecting structural information. The technique is based on combining structure prediction with either similarity-mean filtering or lower-upper-middle (LUM) filtering. We use structure predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998